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We present results of a study of heat transfer during nonlinear oscillations of a 
gas in a half-open tube. 

In resonance oscillations in a half-open tube the amplitude of the velocity pulsations 
is determined by the amplitude of the displacement of the piston operating at the closed 
end, and by the conditions at the open end. The amplitude of the velocity pulsations at the 

open end of the tube can reach values of 100-150 m/sec, and the oscillation process is ac- 
companied by various nonlinear effects, including the emission of shock waves [1-4]. One 
should also expect that the thermal situation will be different from that which prevails when 
pressure and velocity pulsations can be considered continuous functions of the time [5, 6]. 

We have attampted to study heat transfer in a half-open tub~ containing gas oscillating 
nonlinearly with the emission of shock waves. Longitudinal oscillations of the column of gas 
in the half-open tube were produced by the harmonic motion of a flat piston at the closed end. 
A compressor with a piston stroke 21o = 0.086 m and a diameter 2Ro = 0.077 m was used to 
maximize the amplitude of the oscillations. The crankshaft was driven by a dc motor. The 
tube had an inside diameter 2R = 0.04 m and an overall length Lo = 5.485 m. It consisted of 
five removable sections, which permitted experiments with systems of various lengths. The 
tube was connected to the compressor through a conical reducer of height h = 0.i m. 

The frequency of the oscillations was measured by passing light from an incandescent 
lamp through a hole in the rotating pulley and onto a photoresistor whose output signal was 
recorded on a ChZ-33 frequency meter. 

The mean flow temperature was measured with a resistance thermometer, and the pressure 

by a type LKh-610 water-cooled piezoelectric transducer whose signal was fed into one of the 
inputs of an SI-18 double electron oscillograph. The pulsating velocity was measured with a 

constant temperature hot-wire anemometer by the method described in [i]. The signal from the 
hot-wire anemometer was fed into the second input of the oscillograph. The dynamic calibra- 
tion of the wire was extended over the frequency range 0-40 Hz. 

The oscillograms of the pressure and velocity oscillations were recorded by a photo- 
graphic attachment. The oscillograms obtained are complex curves containing discontinuities. 
Since the hot-wire anemometer records the "rectified ~' signal, the velocity oscillations have 
a frequency twice that of the pressure pulsations. The velocity oscillograms were processed 
under the assumption that the mean flow velocity is zero. Therefore mirror reflection can 
restore the form of the velocity oscillations. The "range" -- the difference between the maxi- 
mum and minimum values of the pressure or velocity oscillations -- was measured from the curves. 
For linear resonance half the range corresponds approximately to the amplitude of the oscilla- 
tions. In the remaining cases it was assumed that the semirange was proportional to the 

amplitude. 

Heat measurements were made with a probe (Fig. i) whose working portion 1 consists of a 
section of tubing 0.i m long with flanges 2 to help minimize heat fluxes in the axial direc- 
tion. They also served to support the bracket 3 with the traversing device 4 and the velocity 
and temperature gauges 5. 

The heating coil 6 was insulated from the housing by a thin layer of mica 7, and from 
the external medium by a layer of asbestos 8 flush with the flanges. The velocity and 
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Fig. I. Heat flux probe. 

temperature gauges were insulated from the housing by Textolite 9. The working portion was 
attached to the main tube by adapters i0. Asbestos board disks 0.01 m thick were placed be- 
tween the flanges of the adapter and the working portion. An opening was provided in the 

probe housing for the insertion of the velocity and temperature gauges 14, a thermocouple, 
and the pressure transducer assembly 12. Thermocouples 13 were mounted on the inner and outer 

walls of the housing of the working portion, on the outer surface of the asbestos layer~ and 
on the flanges on both sides of the thermal insulation disks. 

The heat-transfer coefficient was calculated from the formula [7] 

qp 

For  t u r b u l e n t  f l o w  of  d i a t o m i c  g a s e s  i n  t u b e s  ~ = 0 . 8 5 .  The q u a n t i t y  qF was d e t e r m i n e d  f r o m  
t h e  f o r m u l a  

~v ~At~ ~ (R~ - -  R ~) Atd 
qF-- 2nRlp  Rln(Ra/RO Rlplm (2)  

In (2) the loss of heat from the flanges to the surrounding medium and through the housing 
of the velocity and pressure gauges was not taken into account. The physical parameters were 

taken at the film temperature (T c + T~)/2. All the measurements were made at a constant tem- 

perature of the inner surface of the probe wall. The total error in the measurement of the 
Nusselt number did not exceed 12%. 

The heat probe operates in the following way. The heat flux from the inner wall of the 
probe housing is transmitted to the oscillating air stream which is heated to a temperature 
T , lower than T c. Since the rest of the tube on both sides of the probe is at a still 
lower temperature To, there is an exchange of heat between them and the air stream also. As 
a result, for a certain relation among T , Tc, and To, all the heat from the probe is com- 

pletely removed by the rest of the tube. The opposite case when the tube itself is heated, 
and the heat is removed through the probe housing, is not treated here. Thus, the heat 

fluxes were produced directly in the probe, and served for the detection of thermoacoustic 
effects. 

Figure 2 shows oscillograms of the velocity and pressure pulsations for a) linear 
resonance with a frequency fl = a/4L and b) the second nonlinear resonance with a frequency 
f2 = 3a/8L in a tube of length Lo = 3.485 m, where L = Lo + m21o + (m 2 + m + l)(n/3) and 
m = Ro/R. 
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Fig. 2. Oscillograms of pressure (upper) and velocity (lower) 

for a) linear resonance (i, X/Lo = 0.875; 2, 0.301; 3, 0.014; 

fl = 22 Hz) and b) the second nonlinear resonance (x/Lo = 0.014, 
f~ = 33 Hz) in a tube of length Lo = 3.485 m. 

The oscillograms show that for the resonances mentioned shock waves are emitted from the 

open end of the tube. For the first nonlinear resonance the pressure pulsations at the open 

end of the tube retain a symmetric form, and therefore one can say that shock waves are not 
emitted. We note that loss of symmetry and the appearance of a discontinuity are observed 
near the piston (frame 1 of Fig. 2a). 

Figure 3 shows the frequency distributions of a) the Nusselt numbers and b) the dimen- 

sionless semirange of velocity pulsations at the open end of the tube. All the relations 
have a resonance character; the resonance frequencies of the Nusselt numbers and the dimen- 

sionless semiranges of the velocity pulsations coincide. As the length of the tube is in- 

creased, the semirange of the pulsations and the Nusselt number decrease. 

The solid curves in Fig. 3a represent the average Nusselt number over a period of the 
oscillations calculated by the quasistationary theory [8]: 

Nu = Co)R:~, j (U[( t ) )n  dt  -~ C~Re~, (3) 

0 

where C~ = 0.027 and n = 0.8. 

It is easy to see that the quasistationary theory gives a good description of the experi- 
mental data for the open end of the tube. The divergence of the data increases with the dis- 

tance from the open end of the tube. The high value of the exponent n, characteristic of 

fully developed turbulent flows [9], should be noted. 

The distributions of the Nusselt number and the dimensionless semirange of the velocity 

along the length of the tube are shown in Figs. 4a and b, respectively. As might be expected, 
the heat-transfer coefficient decreases with the distance from the open end of the tube; a 

decrease of the length of the tube is conducive to an increase of the semirange of the veloc- 
ity pulsations and an increase in the heat-transfer coefficient. The results shown in Figs. 

3a and 4a are satisfactorily described by the relation (solid curves in Fig. 4a) 

N u = C 1 R e ~ - ~ C 2  1 - - c o s  - -  , (4) 

w h e r e  C2 = 95 .  

I t  f o l l o w s  f r o m  (4)  t h a t  an  e f f e c t  a r i s e s  i n s i d e  t h e  t u b e  l e a d i n g  t o  v a l u e s  o f  t h e  Nu 
number  l a r g e r  t h a n  t h o s e  f r o m  t h e  q u a s i s t a t i o n a r y  t h e o r y .  The i n c r e a s e  i s  l a r g e r  t h e  f a r t h e r  
t h e  h e a t  f l u x  p r o b e  i s  l o c a t e d  f r o m  t h e  o p e n  end o f  t h e  t u b e .  At t h e  o p e n  end t h e  e f f e c t  
v a n i s h e s  c o m p l e t e l y .  

U s i n g  a f l a t  c h a n n e l  as  an  e x a m p l e ,  we t r y  t o  e x p l a i n  t h e  o b s e r v e d  e f f e c t  q u a l i t a t i v e l y ,  
a l t h o u g h  t h e  p r e s e n c e  o f  h e a t  t r a n s f e r  c o m p l i c a t e s  t h e  p r o b l e m  c o n s i d e r a b l y .  

B e c a u s e  o f  t h e  n o n u n i f o r m  t e m p e r a t u r e  d i s t r i b u t i o n  t h e  s o u n d  s p e e d  i s  n o n u n i f o r m  o v e r  a 
cross section of the tube, i.e., the propagation of oscillations is nonisentropic, and in 
addition the sound speed is nonuniform along the length of the tube. 

For relatively high-frequency oscillations an oscillating boundary layer is formed near 
the channel surface. If the thickness of this layer 6 = ~2v/w is much less than the radius 
of the tube R, i.e., R~-~/2v >> i, the oscillations in the flow core are practically isentropic. 
For a tube with R = 2,10 -2 m, Lo = 3.485 m, ~ = 138 sec -~, and ~ = 15.10 -6 m2/sec, we obtain 

R/~7~ = 43, which justifies the assumption that the oscillations are isentropic. 
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Fig. 3. a) Nusselt number Nu (i, 2, 3, experiment; solid curves 
calculated from Eq. (4)) and b) dimensionless semirange of veloc- 
ity pulsations U/ao as functions of dimensionless frequency f/fz 
(f~ = 22 Ha) in a tube with i) Lo = 3.485; 2) 4.485; 3) 5.485 m. 

The relation between the nonuniformity of the time average of the temperature distribu- 
tion and the nonuniformity of the sound speed along the length of the tube can be estimated 
in the following way. The one-dimensional acoustic equations in an ideal stationary medium 
have the form [i0] 

au: ap: = O, 0o ~ + ax (Sa) 

apl 0% au1 
..... at + u, ~ + ,Oo -aT-x = o, ( S b )  

where the nonuniformity is taken into account by the term U1($po/3X). We take account of this 
contribution by assuming that the process is isentropic in the flow core: pl = pla 2. In a 
half-open tube with a uniform density distribution U~ = U sin(kx + ~o) exp(iwt), p~ = ipoaU �9 
cos(kx + ~o) exp(imt). Then it is easy to see that for 

(1/Oo) apo/ax ~ ctg (kx + ~o) (6) 

the effect of the nonuniformity of the density (temperature) on resonance oscillations in a 
half-open tube can be neglected. Calculation shows that for nonlinear oscillations in the 
tubes investigated condition (6) takes the form (i/po)3Oo/3X <<(6.71-4.09)m/a near the piston, 
and (i/po)~Oo/~X << (0.15-0.24)m/a at the open end. Assuming that the density (temperature) 
gradient for a given position of the probe does not change along the length of the tube, and 

To = 300~ it can be shown that with an acceptable accuracy (10%) the temperature drop should 
not exceed 7-II~ for the probe at the open end, and 300-190~ near the piston. Taking account 

of the fact that for large-amplitude oscillations there is an intense intermixing with the 
surrounding medium at the open end of the tube, condition (6) is easily satisfied. 

Let us consider the boundary layer equations in compressible flow without restriction (6) 
when the core flow is isentropic. They have the form [8] 

02 ) 0\a 7 +fa § = - - -  

ao a (p~) 
i 

at a~ 

Following Ill], we introduce the transformations 

a-z- + Ty ~ , 

a (o~) = o. 

p O~ p . Po 
0 

(7) 

Simple calculations show that Eqs. (7) go over into the familiar boundary-layer equations 
for an incompressible fluid 
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Fig. 4. Distribution of a) Nusselt number Nu (i, 2, 3~ experi- 
ment; solid curves calculated from Eq. (4)) and b) dimensionless 
semirange of velocity pulsations U/ao over the length of the 
tube x/Lo: i) Lo = 3.485 m (fz = 22 Hz); 2) Lo = 4.485 m (f~ = 
17.5 Hz); 3) Lo = 5.485 m (ft = 14.5 Hz). 

Ou Ou Ou 1 Op OZu 
- -  4 - u - - + v  - -  - -  - -  , 
Ot ' Ox Oy 9 Ox + v ~ Oy z 

(8) 
Ov Ou + O. 

Ox Oy 

To analyze heat transfer it is necessary to supplement Eqs. (8) by the equations for the 
boundary-layer temperature~ which in the new "incompressible" variables have the form 

or OT or to V 
~ . a x a  - + u - + v  ok = x - - + - -  ~ - �9 (9) Og z. c v Oy ] 

We seek  t h e  s o l u t i o n  o f  Eqs. (8) and (9) f o r  r = U / ~  << 1 and R/~/2v  >> 1 by a p e r t u r b a t i o n  
method.  

For the first approximation with Pr = 1 

02~tl Ou~._ 1 Op~ § ~o _ _ ,  
Ot 9 Ox @2 

Ou~ + Ov~ = 0 ,  
Ox Oy 

OTo OTo O~T1 OT1 -t- ul -t- vl = Vo - -  

Ot -~x Oy @2 

(10a) 

(lOb) 

(10c) 

with the boundary conditions 

u l = v ~ = 0 ,  T I = 0 ,  g -  0, U1--Ul(x)  exp(A00, g-~-co. 

Beyond the limits of the boundary layer Eq. (10a) takes the form 

@I 
9io)U~ (x) exp (io)t) = Ox 

and the  s o l u t i o n  of (lOa) has  t he  form 
ul = U~ (x) [~ (y) exp (io)t). 

From the equation of continuity (10b) it is easy to obtain 

vt = U~ (~ [2 (g) exp (i~t), 

where the prime denotes differentiation with respect to x. 

To solve (lOc) it is necessary to know the explicit form of the expressions for 3To/3x 
and 3To/3y. For high-frequency oscillations, however, conditions are satisfied which permit 
the determination of the form of Ti without knowing the explicit form of these quantities. 
Actually, a significant change in To occurs at a distance R, whereas the analogous distance 
for u~ and v~ is ~ = f2w/~. For R~/2~ >> 1 the dependence of 3To/3X, and 3To/3y on x and y 
can be ignored in the integration of (10c). Then we obtain 

OTo OTo ] T~ "~ U~ (x) ~ {* (y) + U~ (x) ~ [* (y) exp (/cot). 
(li) 
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Retaining only stationary terms and Pr = i, the equations of the second approximation 
have the form 

Ox / \ 0--~/ : < UIUI } n- % --Og 2 , (12a) \ 
< u~ > a < v2 > - - + - - . = o ,  (lab) 
Ox Oy 

/ u l O T , \ @ / v  e r r \  _ _  # o r o , \  , _ _  / OTo\  : %  0Z<T2,, q___v~ /t'Ou, ~z\ (12c) 

I 
where < > denotes the time average. Omitting the sign < > from now on, U2 = UiU~f3(y), v2 = 

(U[ 2+UIU~)f4(y). Taking account of the expressions for ul, vz, Tz, u2, and va, we obtain 

OTo 02To ] 
~a OY z (13) 

tUi~ [[~f2 02T----9-~ +([~+f~') ~ ~ +UT+ (f1[~ 02T~ 2 %c; fi=) +UIU~(f~+flf~) aT~ 

The integration of Eq. (13) with respect to y from O to ~ would make it possible to determine 
the heat flux due to secondary flows, but this is not necessary to determine the essential 
properties of the phenomenon. 

Since I << L and R << L, the boundary conditions at the ends of the channel will affect 
heat transfer of the probe in the zero approximation only if the Probe is located near one 
end. When the probe is located at a distance ~ = (5-1O)R from the ends, an estimate shows 
that this effect is negligible, so that we can seek the zero approximation by assuming that 
the probe is located in an infinitely long channel. Then the problem becomes symmetrical 
with respect to the cross section at the middle of the probe at the point x = ~. In this 

case the ends of the probe are in the cross sections at x = o + ~/2 and x = o -- ~/2. In 

order to find the heat flux transferred by the probe to the oscillating air stream it is 
necessary to integrate the specific heat flux of Eq. (ii) over the whole heat-transfer sur- 

face of the probe. In view of the symmetry and the condition ~ << L~ it is easy to see that 
the final result will not contain terms proportional to UIU[. Then, if we assume U~ = U~" 
sin(kx + a) exp(imt), which is equivalent to (6), the total flux qu due to secondary flows 
will contain a sum of terms proportional to sin~kx and cos=kx, i.e., 

q~ = A ~- B cos 2 (kx + a0). (14) 

By using ~ = w~/2L, k = ~/a, x* = x -- Lo as ao + O, the appearance of the second term on the 
right-hand side of Eq. (4) can be explained completely. 

Thus, heat transfer in a half-open tube containing gas undergoing nonlinear oscillations 
with the emission of periodic shock waves is satisfactorily described by the quasistationary 
theory including thermoacoustie effects. 

NOTATION 

lo, amplitude of piston displacement; Ro, radius of piston; R, inside radius of tube; 
RI, inside radius of asbestos layer; Ra, outside radius of flange; Ip, length of working por- 
tion of probe; Im, thickness of thermal insulation disks; x, distance from piston; x*, distance 
from open end of tube; Lo, length of tube; h, height of conical reducer; y, distance from 

wall; ~, heat-transfer coefficient; qF, specific heat flux; To, temperature of inner surface 
of wall; T , temperature of oscillating air stream; Ata, temperature drop across asbestos 
layer; Atd, temperature drop across thermal insulation disks; Nu = 2~R/X, Nusselt number; 
Re k = 2UIR/v, Reynolds number; X, thermal conductivity of air; Xa, thermal conductivity of 
asbestos; v = ~/p, kinematic viscosity; ~, dynamic viscosity; p, density of gas; X, thermal 
diffusivity; 4, temperature recovery factor; y, adiabatic exponent; I, current; V, potential 
drop; A, B, C, C~, C2, constants; f(t), time dependence of velocity oscillations; p, pressure; 
t~ time; %*, wavelength; k = u/a, wave number; ~, d~clic frequency of oscillations; f, excita- 
tion frequency; f~, f~, natural frequencies for linear and second nonlinear resonances; ao, 
speed of sound in unperturbed gas; a, speed of sound at T~; M = U/a, Mach number; U, s emirange 
of velocity pulsations; U=, amplitude of velocity pulsations at open end of tube; UI, velocity 
pulsations in flow core; u, v, longitudinal and transverse velocity components in boundary 
layer; To, temperature of cooling part of the tube wall; 6, boundary layer thickness; o, 
longitudinal coordinate of center of probe. 
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EXPERIMENTAL STUDY OF THE MIXING OF TURBULENT, OPPOSITELY 

TWISTED STREAMS IN THE INITIAL SECTION IN AN ANNULAR 

CHANNEL 

A. A. Sviridenkov and V. V. Tret'yakov UDC 532.517.4 

A study was made of the effect of the tangential component of mean velocity on the 
mixing of oppositely twisted flows. The equivalence of the mechanisms of formation 
of the velocity profiles in the mixing layers of oppositely twisted and co-current 
flows was established. 

The twisting of flows is one of the most frequently used means of intensifying mixing 
processes. A large number of works have now been published involving theoretical and experi- 
mental investigation of twisted flows -- [1-4], for example. These studies examine flows 
twisted in one direction and note that the swirling significantly complicates the flow pat- 
tern and analysis of the laws of its development as well as generalization of the data. 
The same situation holds with regard to the case of coaxial streams with opposite directions 
of rotation. At least two additional factors, characterizing the intensity of the twisting 
in each flow, must also be considered here as determining parameters. 

The present work experimentally studies the laws governing the mixing of oppositely 
twisted flows and is a continuation of the work in [5]. In the ~ latter, it was shown on the 
basis of analysis of loss for unseparated mixing of flows that the use of high degrees of 
twisting is best from the point of view of reinforcement of the mixing properties of the 

flows. 

The experiments were conducted on the unit shown in Fig. i. An air flow was created by 
a fan 1 installed at the outlet of a channel. The air entered annular channels 2, at the 
inlet of which had been installed grates 3 of variable through cross section. This allowed 
us to independently vary the gas flow rate in each channel. The flow was twisted by tangential 
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